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ABSTRACT

For molecular systems with a relatively small number of degrees
of freedom internal relaxation processes are described by a non-homogeneous
master equation for non-diagonal elements of the density matrix. The
theory is applied to internal vibrational relaxation and intramolecular
rearrangement (isomerization) reactions. The general character and

certain types of solutions of the master equation are investigated.




1) Introduction

In the theory of chemical reactions the reaction pro-
cess is often pictured us the consequence of two interfe-
ring mechunisms which may be named external and internal
collisions. Sometimes one also refers to the latter mecha-
nism as "redistribution of energy between different degrees
of freedom". In many instances, as in the case of unimole-
cular reactions and of bimolecular reactions with long-li-
ving reaction complexes, it is the internal mechanism
which plays the decisive role in transferring a molecule
or supermolecule from one region of relative stability
within the configuration space to another. The perturbution
by the externitl collisions of a moleculaur system cun then
be assumed to remain loc::lized within one ol its chemicual
configurations, with other words, readion in such cases
is very unlikely to occur as the immediate consequence of

an external collision,

Picturing the reaction by the internal mechunism was

1,2,3

extremely fruitful in the theory of unimolecular reactions

1)(). K. Rice, H. C. Ramspersger, J. Am. CThem. Soc.
49, 1617 (1927), 50, 617 (1928)
Re A. Marcus, 0. K. Rice, J. Phys. Chem.
55, 894 (1951)

;)L. S. Kassel, J. Phys. Chem. 32, 225 (19238)

N. B. Slater, Theory of Unimolecular reactions

Cornell, ithaca, New York, 1959, p 22.

and we shull refer to it explicitly throughout this puper.

Une of the assumptions, used in specifying the internal




mechanism, 1is that the reactunt molecules with internal
energy Ei form a2 microcanonical ensemble with equilibrium
properties ( i.e., constant density in phuse space over
the react:nt region of the energy shell hi...Eidei,resp.
commutativity of the density matrix with the liamiltonian
of the reactant-species). This implies the existence of

an intramoleculuar rel:xation process with & relax:ation
time short compared with the time between the external
collisions. Since molecules have o very small number of
degrees of freedom it is not at @#ll evident whether and
under which circumstances such intern::l relaxation mecha-
nisms may be taken as grunted.lhe reaction process itself
also needas further clarification. pParticularly in the cuse
of an intramolecular rearrangement reaction (also termed
"isomerization reaction") one again makes explicit use

of the assumption thut there is an intramolecular relax-
ation mechunism, since otherwise tiae molecule would remain
oscillating between reactant and product configuration till
the external collisions had damped these oscillutions away.
In the latter case, however, a first order rate process

could never be observed.

From the viewpoint of statistical mechi:nics the pro-
blem of intramoleculir rearrangement reaxctions is tue more
intri;;uing one since all energy levels of the reacting mo-
lecule .re digrete :nd non-degener..te. the forthcoming
trectment can easily be speciwlized to monomulecular de-
composition reactions. 1i also contuaias the special case

of internal vibrational relaxition.



To the knowledge of the author, the only treatment,
of intramolecular rearrangements, different from the scheme
used for monomolecular dissociation reactions was given by

&)

randon phases assumption. S. Goldensdlso focussed attention

Golden and Peiser who based their approach on the repeated

4) S. Golden, A,M, Peiser, J. Phys. and.Coil.Chem., 33, 739 (i951)

5) 8. tolden, Supyl. Nuovo Cimento,5, 540 (1957), 15,335 (1960)
and private communication

on the problem of how to understand the intuitive concept
of chemical species in terms of quantum mechanics which is

of prime importance for the present case,.

Intramolecular rearrangement reactions represent a problem
by its own nature in statistical mechinics. The systems we are
dealing with have a comparatively small number of degrees of
freeuom so that some of the assumptions, generally agreed on,
for the derivation of a master equation do not hold. Furthermore,
in contrast to the main goal of the statistical mechanical treat-
ment of ordinary systems, except those with magnetic fields,
where one calculates the timeflependence of the diagonal elements
of the density matrix, we are exclusively interested in thec
non-diagonal elements of o (t). The master eqation we arec to
derive will be non-homogeneous (reflecting the fact that the
initial density matrix does not commute with the unperturbed
Humiltonian(j{o) and the solution at very large times will
shape into a diagonal density matrix. The relaxation times
for the non-diagonal mutrix elements to disappear can then be
related to internal vibrational relaxation and the rate of
intramolecular chemical change. iates of reactions calculated
on the basis of a purely internal relaxation mechanism, will be
meaningful as long as the relaxation timé of the unperturbed
system under the action of outer collisions is long compared

with the tim¢for relaxation by the internal perturbation.




2) Chiaracterizing- Heuctunt- &nd Prouuct Species 1n

System with Intramolecular hange

The concept of molecular snecies, s it 1s usca in chie-
mistry, b.os no correspendence in bosic thearics for the des-
cription of niature, like classicul mechnnics - nd quantum we-
chhanies. The reason is that the chemic. 1 aspect of m-tter is
on operational one which can be churacterized oy ceivtuwin li-
mited sets of measurements. uther properties of maitter are
considered Lo be veyond the scope of chemistryv.

S, ‘\;()ldenj) has iven a comprehensive formal cescrigtion
of the operational structure ot chewistry postulacing the
existence ol complete sets of commutin:g observubies whitch

can bLe used Lo determine the chiemical state of moetter in
accordance with the intuitive traditional concept ol chesic il
species. tour the purpose of the present investisation tne
construction of such -« set of couwmuting observables will bie
instrumentul. At the same time the limitations of the chennend

viewpoint for melecular species which c¢on convert into ench

otlter will become obvious.

In denling with a certain closs of chemical recctions,
s n first step we hove to characlerize the properties of
any set of me..surcments suitable for distinsuishing between
tiie different molecular species and for further determination
of the chemic.1l situation. vut of the wide range of chemicully
relevant meuasurruments tihere umay be selecled different sets
with commutingg observubles comprising only the minim:l non-
ver of measurements necessary for complele detormination
o' the chemical state of o system. Lach such sct con we di-
vided inte two parts so th at it will contoin weasurements
wirich serve the purpose to distiniuish between different
h

)
vy

1° e OT cluastors of

chewical species (e, 7. molecules 3



molecules M1M1, 1 and

also measurements which will complete the quantum wmechanical

MMy, ee, MMM, MMM, ... etel)
information, so that an initial density matrix g is uniquely
4]

determined,

Any two chemically relevaut measurements must enable
us to distinguish between atleast two cliemical species.
Now from physical insizht it is known that chemical species
may always be characterized by the atoms (or ions) out of
which they can be thought to be built up, furthermore by their
"chemical structure" which usually refers to a certain
range for the relative positions of the nuclei. "Chemical
structure", however, may @lso be understood in a broader
sense, comprising electrons localized with respect to some
of the nuclei, thus «llowing ions or even local excitations
Lo appear as a chemical species. We may idealize any sct
of measurements for determining chemical structure by a
single observuable "configuration”,denoted by:f{n For our
purposes it is not necessuary to introduce measurements
of the elementary composition (numbers of electrons and atomic

nuclei) explicitely.

In the cuse of an intramolecular rearrnngement,%/will
not even approximately commute with the Hamiltonian &K .
nor will it commute with Uﬁo, since energy and locel co-
ordinutes do not couwmute. Nevertheless, there must be an
observable related to the energy of a molecule in one of
its chemical confisurations., l.et us assume there are only

two chewicual species involved, the configuration of which

T s
can be found by measuring ﬁk and '7( .




tr(?(lf)=;7 and fr(7<r"’§-7>"

where tr denotes the tr.ice of - m.trix, will then be the re-
lative numver. of molecules in configurations 1 anu

I
spectively and the initial density will comuute with W

[7‘,(1:} ?o]=0

The Humiltonian and also the unperturbed j'uamiltoniun must

now be divisible into the following parts
R S A
g 7
fxll=0, [®' K]
| ~ I o T T KT
_ LWO,A/J‘O»‘,L?C'RJ 0

4 A
?6 and 07(‘ are representing the non-reacting species

where

0

and

—

LI 1 - ' HEana T, a
4 anu 1I. 1Yoe bound eipgenfunctions of and s aiso of
Fr . by . . . .
s and 7(,, y must then be localized in the regions of the
respective chemical confisurations. Thus, the eigenfunc~

tions |o;) , l«3> and [ X7), i), satisfying

7T ~I’ Z . ~E
% 4a<§> | J(“Mnﬂd (<5 >
ana

will be eigenfunctions of 7(‘ and (F with
I
7( I"(j_ 7= ‘°<I7
I
;( [°(n) = O
Ky = Ity >
KEikgy = 0
112[0&%1‘,{77 and “150{“(17:!0(11)} span the whole ililvert

and similur equations for II.




T ro I
space 7V and }( are projection operators. Moreover, since
)g1>andldi)are s0 strongly localized in the region of con-
figuration I or 11 respectively, one configuration operator

will be the orthogonal complement of the other. Thus

RE=1-HT
tr(](zf> + fr(ﬁzf) = |

Explicit constructions of J:f,;t}? 7{Iand’F(£will e oi-

ven in chpt. 3.

and

At ihe initial time t=0 an ensemble of molecules shall
exist us chemical species 1, i.e it is represented bv a den-
sity matrix ? which is diagonal in tie eigenrepresentation

T o
of ]? and QE-, — I

o
5°=2_/°(I> Focorl,

z
This initial density will now decar in two ways:

1) leakage through the barrier between configuration 1

and II by tunnel =~e¢ffect

and

2) transitions caused by the perturbation 1f1
A characteristic time/denoted by ?; and ?; y can be related
to both of tliese processes. The time T%Javailuble for the
measurement of 7‘(I and KI, is therefore limited by ’tj and
T; . To be sure that our ensemble has not changed consider-
#bly during the measurement we huve to make T%ﬂ@‘%UbL(%fa>

I T

A limited time for the meusurement of 7¥ and &i
implies un uncertainity in the energy of the order T . On
the other hand, if ¢, decays very rapidly by tunnel-effect
and transitions, T, inay become so large that the measure-

I
ment of %, would spread out the energybf the ensemble way




above the barrier between configurations 1 and 1I. We
shall exclude this interesting case here since it is bevond

t } - p . - > e ]
hhe scope of chemical kinetics, assuming t; 4§Elt )

where Eaiis an energy of the order of the height of the

barrier between rezions I and I1.

I
For nearly all chemical svstems one can replace ;%o

by two dependent measurements, gr and Zlf, gI. representing
the electronic state of the system, its eilgenvalues e la~
belling sets of electronic gquantum numbers, whereas ﬁ}:
denotes the observable related to the vibronic energy attri-

I T
buted to the electronic state e. ?‘ ond zZCommute for at

least most systems of chemical interest,dMore frequently, how-.

ever,we shall find that é’ and e + the corresponding ope-
rators for the whole system do not commute. ‘ihen Born-Op-
penheimer separation does not hold and the ensemble of re-
actant molecules will change its distribution over the elec-
tronic states in the course of the reaction. Commuting ocper-—
ators, related to gi ;uuii)e, can nearly alwaysbe constructed
in the following way. Denotin: all eleéronic coordinates by
o~ o~
X, all nuclear coordinates by X and letting Jk and Li re-
present the kinetic energy operators of nuclei and electrons

respectively, the total fhamiltonion is (‘ip the absence
o~ O~
K=t St Uex, X)
§ ot UXix)fies - Egle>

of magnetic forces )
Solving

we can define

g - Jle>e<e]
e
@e= <e/Z:e>

The diagonal pdart of the operator SD s &iven by

and




j]ew= Jlevce| Hies<el
e

will then commute with él . By this method we can alway=

construct sets of commuting operators, like

% EIJ «Dzd) @I(d)
I X weel) T :
KT ET QIO DI

2 )

It is clear that in cases like the above mentioned the
non~diagonal part of p would occur as puart of the per-—
turbation operator on a later stage of the theoretical

treatment,




3) Quantum Theory of Internal Motion of a Molecule

Description of the reaction process requires the con-
struction of a special set of eigenfunctiions for the inter-

nal motion of a molecu1e6). To this end we shall make

o)

see L. Hofacker, Z. Naturforsch. 18 a, 607 (1963)

two restrictive assumptions:

1) The whole reaction takes place under a fixed

set e of electronic quantum numbers. E will
oA
therefore commmute with ’;( ’ ;(-) and @é)

2) unly the action of conservative forces is ta-
ken into account. Hence, €oriolis forces will
be neglected after introducing a coordinate
system wnich ioves and rotates with the mole-

cule.

1t there are N atowmic nuclei with coordinutes X cee X

17 3N

in a coordinate system, rigidly fixed to the wolecule, the

forces acting on them will have a potential
UJT(X1,......,A3N)

which contains the centrifugal forces and depends therefore

on the rotational quuantum numbers J and T (related to total

angular mowmentum and one of its components).

[o3%Y

ille inner motion of the molecule is now represented by wave
packets moving on the potential energy surface . The potential
huas the shape of two double moulds and the process of inner-
molecular conversion takes pluce by the passage of wavepuckets
from one mould to the other. Solutions for the motion of

wuaves in all regions of the many-dimensional potential energy
surface are, of course, extremely difficult to obtain. However,

since the wave puckets represent thermal energy, their stotistical




weights become lower and lower as their energy

rises., Examining the problem from this angle we wav savy
that the rate of the reaction will be determined by those
wave packets which pass the saddle between the two moulds
near its lowe$t point having little kinetic ernergy at the
same time. Those wave-packets will follow rather closely
a line of minimum curvature, termed the ‘reaction path",

b
i

which leads from the bottom of one mould across the saddle

point to the other mould.

vur concern now has to be a twofold one., In the first
place we want to calculate the flux of wave-packets along
the reaction path., This implies to establish a complet®
system with the property to factorize the motion alony the
reaction path from wotion in other directions. OUn the other
hand, .we shall try to exploit the fact that the deviation

of the center of wave packets from the reaction path is smali.

First we determine a family of coordinate surfaces

)?L . )72()(,“_., Xin )

.

(4]
A el

M W LA NI TYIN S
(there are M internal
desrees of freedonm;

which shall have the property to contain the reaction paii

so that

6 Y = - - :-;0
(6) 1,7 s T
is a set of equations which has the point-set of the reaci:.n

path as its only solution. The coordinate. surfaces 7 =consl,
]

will then intersect with the reaction path,.




Ia the system of skewed internal coordinates

the kinetic energy operator is

M b M .
(7) G e .ZK,J’Q _ (it?wa
v RS R VAR PR
2)=1 t ?j J"'
(8a) where 3N ~
3 Z ! 97x 9,
(& 4 & mc axp ;»-’
{&b) and o

W shai; from now on, distinguish the coordinate?'by denoting
it as § . 1t is our aim to find a complete system which
separates g from the other coordinates. This can, in general,
not be obtained, yet, it is possible to find a complete set
for the intern:l nuclear motion of the molecule where the

eigenfunctions have tie form:

(9) Y(g’;fa_!”‘-“ym) = é(’é}{f{?’?z’"” ’}()"2)

with the property that

Y

{fﬁ§;’behaves wave-like in §

Fa . . .
L;(§ ;?2,....,?H) is a wave-type function “172""Q3
but not in E; the variation in § will befound to depend on
certsain curvatures of the potential energy surface,

1f we determine

E = '? kX,”"? XsN)
csuch that '

; M
(10) UL 62'37. I G’L{ =0

"

the kinetic energy operator now reads

M s
(11) T. 7"+ TV

P

sd

~e
LS

- T L

Tuv‘




(2331

The Heuwiltonian is

£y

'y S }
A= o+ W

.

o

> % + T&,‘\.‘v& ?_;(,

,_..
ra
S
‘
i

-4
ety ey ¥
= g <+ 'ﬂf
-3 (
ref

>

Note Lhat | depends on all internal coordinates Lot
ot

Pl

. PR . . . - ; o . iy M
containg ounly 78 fTerentiations wirh rospect to wher: deoeras
; r ;
crngonly as o parvameter.
Thern the eigenvalee problom

oW e )
(13) al. iy SRS DEE

produces ;.n(fn;,»s curves of ihe following kind

AE (5

i

i
o]
i

oram 1

L

]
i
|
|

thiese earves do not intersect by peasomns sicnllar to thos: fouad #ar sned

N
By

sart

copie terms. Furihermore, we may defipe the diggonal i
3

o
+

LYin

- 4 . i 3
ol 1he operator with respect to ¢ i®R>t:

. <
.. £ =1 €~ %
(143 Corm Jodmy ot L 7 ms em

e d T

mad solve the eigenvalue problem

e B
- s N
(15) SOy my T 0F
PO

where My depeuds on & only., Then it is easy to see tuat




(16) InV > = ImYIni)

is an eisgenfunction for

DN S -
(17) {_((;) + ﬁv;[}w> = Epuinvd

We write this eguation in the form

(18) K, lnu>=FE_ inv)

~E 3
Since the non-diagonal part of KM, “fnet ) 18 defincd by
. : £
& ?“§ ak
s =\
(19) §7= Yo T iy

the Hazmiltonian is now erlit up into a main part and a per-

K= %+ T
&, +V

turbation :

il

(20)

i

Assuming that wave-packets which lead to reaction will
not deviate much from the reaction path we may expand the
potential in eq.{13) to second orver terms in theﬁ% and
use familiar methods for the treatment of small vibrations.
in the vicinity of a point on the reaction path with coordi-
nate % the coordinate surfaces q; = const may be substituted

by their tangential planes,

P (60X
21 = )
(21a) )Zﬁ C’ka(§)+ i—-‘d&g (%) ¢

Oor in matrix notation

(22b) zvz;- <, + Cxn




After any initial choice of the coordinate surfaces N
in this approximation all & for i,k » 2 become functions

of g only, hence

k@ 9
@ LR

Expansion of the potential yields
M
(24) u(g;’(,;-'—/’im)” u(§,0,--.,0) + g fz“f)’li t g& k“(g)'? )Z

The ﬁ(g) will in general not be zero wherefore we introduce

new coordinates

@2yt uE) o« pep-a

thus that

™M
(26) W(E Ty T ) = u(g 0,..,0) + .2; k-kfé)i_ 7
and

v Bk ‘D P M
(27) &=L b -———;5~ + W(E,0 - 0) + I shytiny
yl-2, 7’( {22

Now a new reaction path which may be called the "dynamic
reaction path" can be defined by the set of equations
(cf. equs.(6) )

(28) ’21=).?—3 = ----:.".’?M

Since all this holds for a fixed § we have to put

(29) £-¢

In equ. (27) kinetic and potential energy can be made

a sum of square terms by a transformation

(30 7= A 5. [
? ? ) ? ? .
"




so that it now reads

M a
9 ~g e %
(31) 3fr=% g—-—:f@;(?);;?: + As(ﬂ’?i g + U(§,9,--9)

It can be shown that in the new coordinate svstem equs.{10)
still hold.
From (22b) and (25) follows

7-¢-a + Cx
=é°.+Cx, @o=cc-—@!

and with (30) we have
A'vi-&wrﬂx
73 - Ale, + NCxr
= C + @x;
g, = A'C,
C - AC

(32)

Starting with(32) instead of (22) equs.(10) become
M 2¢ 9
CREPNE A
Pl L2
= 0 (k=2,3,--, M)
‘();3) 60‘&‘:0 where 0?;3;‘&((%%)) 0’&'___ (;‘
3




On the other hand,the particular form of the Hamiltonian
we are making use of was attained by choosing some tﬂ

which satisfies, according to (22), the equation
(34) Coli=0

Since A is non-singular, (33) is fullfilled by putting
~y

(35) oﬂ = 0‘6

We can therefore, in the limit of small oscillations around
S
the reaction path, change the?z ~coordinates to the 72

without violating the condition (10),

After all,we can write the energy En(§ ) in a more
elaborate form “
(36) E(§) = Yoy +4) + UCE,0,--,0)

22

By this approach we have neglected all anharmonicities
except those which occur along the reaction path. Undoubtedly,
in chemical reactions the anharmonicities a wave-packet
is subject to on its way streight towards the saddle will
in general be more important than those of oscillatory

motions which can not immeidiCately lead to reaction.

We finally have to give a proper definition of the
one-mould Hamiltoniansékf and sz which one needed to
construct the initial density matrix go. From equ. (13)
follows the set of curves En(§ ) . Let us denote the maximum

in the middle of the n-th curve by §n' then we may define




]

. B
KEYime> = Ej(E)imgy  fr E<E

¥, ?}‘
JC(g)iny

LYYy
3
N
il

L) Imgy = ENimgy 0 £ §,

ing> and 1%z > will then be equal to im> in their respective

regions, Murthermore, choosing E+ (g) = E*- (§ ) for
—~ .n° nJon

< .. . ; I .
I > §&, we may define gnyz7and o ny by

with a similar equation holding for mould Il

s L n

i , 2® . . . . .
Thus J{o ana JQ are piven eigenfunctions and elgenvalues
t - ,/\a > EI 'l""d f’Y*T‘>£Y"J ) F:ﬁ:
!rLL>anI ¢ nv clsz RGN [ Z_ . W
it shall be noted here that for the problem we are investii-

s ively.
oy € pectively

gating only bound eigenfunciions, located in mould I or i,
are of any interest,
py I :
7% and 7q/ can then be defined by
1- =1 ~ _*_‘Z T i , t
K™= 2 imy><ny | K= = ) iavg><mdl,
dy ) nig
(ﬁov.vi (hmk«i '

states) stater)



+) Derivation of KRelaxation Equation,

We shall now consider an isolated molecule with an
initial density ?0 which is non-diagonal in the eigenstates
of the total Hamiltonian & . The crucial question is what
the asymptotic behaviour in time of such a svstewm might be.
Molecules are finite systems and therefore it is not eviaent
whether we shall be able to derive a master-equation
describing the internal relaxation process. 1t can casily
be recognized that not all the assumptions employed for
793)'})

infinite systems by van Hove and others in order

7) L. van unove, Physica 21, 517 (1955); 23, 441 (1957);

25, 208 (1959)

8) R.W.Zwanzig, .ectures in Theoretical I'hvsics II1, Boulder
1960V, Interscience, New York, 1901, p. 1006

9) A. Janner,itelv, pPhys. Acta 35, 47 (1962); 30, 857 (19673)

to derive a master equation will hold. Nevertheless, we
shall be able to establish un asymptotic solution of the
von Neumann-equation which holds on o certain tiwme scale.
This can be done in a more straightforward way by direct
investigation of the damping form of von Neumann's equation

wr ) ) 1 L} 1 .
than by applying a Laplace-transform method'u"1' ' )).

1U) W. kohn, ..M. Luttinzer, Phys. Rev. 103, 590 (1957)
11) S. dakajima, Progr. Theor. Phys. (Kyoto), 20, 948 (1955}

12a) F.W.Montroil, Lectures in Theoretic:1l Puysics,l1I, Boulder
1960, Interscience, New York, 1901,p. 22

12 BE.W. Moutroll, lundimental Problems in Stotistical siechinidces
Nijentode Castlée 1961, North Holland,
Amsterdam (subsequently cited as:Nijenrode
1901) p. 230

13). J.Hajdu, Can.J.Phys. 41,533 (1963).




21

In applying the results to intramolecul.r rearran je—

ments we shull make use ol ideus, essential in all comnon

1)

theories of wonowolecular reactions + Suyving thut unuer

certain conditions the effect of collision with & heut-bath

will be negleible.

Jeriving the damping=form of ven Neumann's equation we

may follow the well-known procedure, yet keep in mind tlhiat
5—"0 will not commute with Lhe hamiltonian of the unper -

turbed system, #o . Let the perturbation be the hermitian
U

~E
operator vhiiech mey be identical with wa4in chpt. 3. low-

- i/ L
ever, U .nd d{c in principle

¢ » : : ~%
terms, The lmmlltoxu:m:’fof

may «lso comprise elceectronic

the molicule will ithen oe
- 7%
K=7,+U
and von Neumunn's equation 18
s ry . 4
(37) io = [H,¢]
v, g . .ff
2 o> . - t
Detining o = @ clt; s °
?(f‘) )
we find by differentiation -

s;f(';'..

=

5t)

44 by intesration

é;zfci“i.v: f }dz

t :
- WY A N [ Mot
pl-¢ = -ile T [Vgt)]e " de
[«
or . - . .
~ et (A E .;-:J(a(f"l) . o 4G (t-T)
?g) = £ §o "‘_)8 z;,g(t‘/_ge e
o
Substitution into equ. (J;’) rives
o
. - - T oot gt 7
(3%) §=_1'L'j(c,}§_; -1V, € J ]
i o (¢-T) , A H (T



what may be termed the damping form of von Neumann's equation
with an inhomogeneous term, the latter reflecting the non-
commutativity of'afo and f;.

The eigenstates [&) of the unperturbed Hamiltonian%,’oJ

with
Holx> = E e

may form an orthonormal basis of real wave functions
since we shall be not intemsted in processes involving
dissociation of the molecule. The eigenvalues E; will be
discrete and there are none but accidental degeneracies.
Denoting

w,(', = E‘*-r(,
and changing the integration variabile we can write equ.(38)

in matrix form as

okg, -‘“’r,b -a‘w‘ t
_Z;E-=— ‘?‘ "‘lZiub*?oﬁg fo“d"? b"‘

-a‘«) T £, o~
(39) Z {\L,VN gc Uy ??(f: - )AT - Mr\épb(e- ‘%«sgéf_z_)
t

- V ‘;w‘r’t‘ ..u-J T
oLy e{s oje ?ﬂ(t-t‘)dt + %f\éf,e g) (t—z

Equation ( 39 ) is nothing but a different form of the von
Neumann equation and therefore still reversible. How-
ever, we expect those terms depending on the square of
the perturbation parameter to turn out as internal inter-
actions ( "internal collisions ") of the molecule which
may in some sense give rise to an internal relaxation
process. Even though equ. (39 } itself is untreatable we

shall try to construct an asymptotic solution which holds




for the order of masunitude of time which is of phvsical
interest. 1o this behalf we first have to study the time-

scales inherent in systems of molecular magnitude.

The asymptotic solution ?(f)we would like to esta-
blish shall hold for t of the order of the relaxation
z - R
time. A necessary condition for such a§%¥)tu exist isli‘k)’yﬁ

that two characteristic times of the system ,

14) N.N. Bogoliubov, Studies in Statistical Mecuanics,
North-tlvlland, Amsterd.m 190d,p.1.

15) L. Vau Hove, La théorie des gaz neutres et ionisés,
Les liouches 1958; Hermann, Yaris 19b0,p.151.

16) L. Van Hove, Nijenrode castle 1961, p.157.

an atomic time, ¥

ly different orders oi magnitude. If our physical interest

¢+ and a transvers.l time,% , are of entire-

in the system, characteriged by the expectation values we
want to calculate, requires a time @f the order of magnitude
% and

N

then certain simplifications can be made with egqu. (39)
which may uallow us to establish the assymptotic forum of ?&L
In fact, for chemicual purposes we shall concentrate on a
time-scu.le on which mayor changes in nuclear conrnfisuration
will take place. Should the system be such that its as-
symptotic behaviour can in some sense be described as a
relaxation process, then t;undoubtedyhas to be of the order

of the relaxation time.

It is very simple to identify T, and 7, for . mole-
cular system. 7, will be the average over the reciprocal

distance between occupied levels,

-
Te™ u&F ,



hhereas’qris the average distance between occupied adjacent

. /
levels of and X , —
T& = W
Roughly, for molecules undergoing intramolecular conversion,
we may put W = E, » E, being the energy difference
¢ ¢

be:ween the saddle point and the minimwn point of the reac-
tant mould on the potential energy surface.

Then, with EQCi/o"—-/OﬂQ at u.,

et _ ~ 56 _ 157 .
((:;tztA o )0 -0 at e 22 [0 07 =sec

Es:imation of Ty, requires the knowledge of the density of
states in the saddle region. Using the harmonic approximation

according to equ., (36) and extending it by assuming

Wi(§) = s (§,0)= ¢

where Ei is the minimum of mould I, the condition for a
porentiallcurve to have its minimum below energy EA is

M

- . —

CH)) ing & E =130 w)

g 1

2=y
The number of sets §n2......,nM} , Tulfilling equ. (&),
is approximately ( neglecting the zero-point energy in this

equation):

— ! [ M-t 317)
B(E,) = (dn dn, - dn, = = — !
A ~ _S i 2 m (“))_Dg.“a'}M (M_,)! A -

Jun L F
K=2 k k\tA

17) For a morec precise estimate seec ) i
L.W, Schlag, R.A, Sanusmark, J.Chem. lhys. 37, 108 (19062)




Let @ be the average density of states in mould I of each of
the curves En(E ), Then the density ol states 6°(¥) over the

sauule regivin will we
§(E,) = 2(6,)-a

Assuming n average ratio

E,

A ~o

- — 50

o
and a level density

a = 10° (ai‘.u.)"

we have
- =
'b-:: €v<bA)

and this time will be very large in comparison wiih Tt and
% . For M = 12, 24, 39 we iave T = 1077 at.u. (10_dsec),

10°%at.u. (107sec), 10°7at.u. (10 sec) respectively.

These numvers indicaie, that condition (4#D) wili ve
very well fuiiilied by moiecular sysiems of chemical signi-
ficance. It is importani to note that even tor sysiems with
a small number of degrees of freedom ithie level density is so
frigh ihat tnhe uncertainty relation will play a part throughout
the process, as the eigenstates of tue unperturbed Hamiltonian
can never appear separated withis times of the order of T, .
The variation of the matrix elements éf«ﬁ of an observable &5
with & and F , where  is a state out of an energy intervall
AE_  and £ out of AE,, will then be irrelevant.if AEa and
AlEb are of th order Tf'.or smaller. Therefore we shall find

it sufficient to establish an assymptotic solutionﬁ(t}of ( 39)

4




which also varies slowly with Eq and EF , the characteristic
ranges of change be€ing determined by goand the matrix
elements V& . To this end we take several formal steps

starting from equ.( 39).

The sums in equ.(39 ) cannot readily be replaced LY
integrals since the matrix elements »&g are n-t smooth Innc-
.
tions of E;iuuiE% . liowever, dividing the energy scade into
equal intervals AE1,AL‘2, A , ....,Alib, Cee e
with numvers of states 31, gz, ..,ga, we may
average M%sover these intervals, wriling

a

T
-..,;)b,-..

Veg = 7 2

iR 7 «

ag Jo x€a /3’

where X&Qq denotes that the states & are taken out of (he

interval‘QEa. \éﬁ will now be a smooth function of the parancior
a 4 1if
A1) a large number of stales lie in each intorvuls
Aty
A2) the density of the states ga/z&E& is a1 slowly

varying function over the energy scale.

In addition , we shall require the length of (he intervaol
AE, to be of an order of magnitude to fulfill 2 third condition
. . -1
A3) AL &,
According to A1) every interval will comprise many state:s
of any kind. Following the procedure used in dyﬁBto constiuct
a basis for the molecule with & harmonic approximation one
can see that to a given eigenfunction ;u() we may iind,
within an energy distance of the order of the level =plilting,

another eigﬁnfunction,ld”) , resembling (') nearly pericctly,




exept tlial one oscillator-function contained in ix“» has one
node more whereas another one has one node less. Thus, gi-
ven some \4 y» We may select a luarge number of matrix ele-
ments with w€a which differ only slightly frum each o.uer.
Since coundGiliuns AZ) and A3) are eusily fulfilled vy choos=-
ing AE',L suitably, the averapge \é(s may be considered a slow-

ly varying function of Ei\

Now we may sum equ. ( 39) over all Xea and {iéio .
Using the notatioun

Z‘g?s

{!

S.p
4 352731 “')-(('» = g

We may replace a 2 vy Z?‘: tanen over suliiavie aver e
L ¢

values, ending up with

d?ﬂ -‘."JZE t YA

b .
-z - Tt &Ja; gﬂ" - 2 {SQV:Z go(gbe .-&,?oﬂﬁ%ne

dt
-Cziijﬂ ¢: ac VCB_

2
é
t
fe‘ S’ (-r)d T
[/

(42)

-335\4 ‘e j w‘bt‘?c (T AE
a e

o t
LY L
+9.9,Y%eeVer fe (e-r)dr

Equ. ( #2 ), as it stands, may be treated further to find
an asymptotic solution f(f) More insight in the nature of
tlhhe solution, however, cuan be gained by the procedure used

in the following.




Since'l?’, and ’t‘b, for most molecular systewms, are of such n
different magnitude there may be an even coarser contrac-
tion over the energy scale for the asymptotic density
matrix ?(f) which nevertheless will lead to the s:nme exfm:‘t.:a«
tion values. Having choosen a division of the encrgy scuale
into intervals AE which are as small as possible by order
of magnitude, we may find a coarser division into intervuls
AE’, suitable for simplifing the solution of equ.{ %% ) in
the following way. Let the intervals be

AL, AE), ... AE, - AEg,

containing an even larger number of states

G1, G2’ ¢ e o9y GA'.'.’ GB,OOO
so that
ey
g
G, = 21—
and g aeA ?‘L
B1) GA/gq_ is a large number

! _
Furthermore, AE’ shall be tauken to be aus larre as possibie
by order of magniiude, yet fulfilling the regquirements
’ . . .
B 2) AE’ 4 energy interval of characteristic change

. . \ N—'
in fon((x with E, and EF (i.e T )

’
B 3) AE é energy interval of characteristic change

of Vi with E; or Ef

B4) AE'< ¢




From the conditionsd the requirement B3) will normally be
the most restrictive one, thus determiningt&Eﬁ We shall be
able to construct an assymptotic density matrix g(f) , where
ﬁ(p(t) will not vary appreciably with X& A E, and lﬁ £ A Ege
Our method is somewhat similiar to the use of coarse-grained

densities in classical statistical mechanics.17'16’19)

17) P. Ehrenfest, Collected Scientific Papers, North Holland,
Amsterauam, 1959, p. 213

18) D. Ter Haar, Rev. Mod. Phys. 27, 289 (1955)
19) N.G. Van Campen, Nijenrode Castle 1961, p. 173

g—

1f we sum equation (#2) overé%ag;%he first two terms on the
right hand side can simply be written in terms of the indices
A,B,C, whereas the collision terms can be given further
treatment. Let us look in detail at the first collision

integral; the others can be handled in analogous way:

t )
Z Z 3,‘ ¢?¢ VEE Vzé jé.zuzzrfeb(t-r)o(r =

1&A éle
beg
(43) € OG S P A o -z T
3 B[ £ £ =)ol
= a gc_ VKE VEE ’gj f ’7 S, ¢ )
o

Expanding +-T) under the integral-sign in a Taylor-series
§

Py k
-T) (&)
e (£-7) =,=Z 7§
we have to evaluate the integrals

-1 “)EB,“ ™
e -

t
7 . )"
Iy

ki I
o ’

(44)




The ’:T,k can be generated out of each other by differentiation.

l 9"
3& = ik g1 Quwk 7c:

Since W;ztH» [ for nearly all teris under the suw 1n (43) it
can be readily seen { intoducing T'=¢),aT as a new variable
of integration) that the upper limit in the integral (&4)

may be taken infiarte. Then we have

_ {O for E- égi”
7‘26 go = @_B(Ea) where @‘3( Z) T Ep £ EEL

Fn %,

1l

LOE (L),

Foet

J denoting the principal value,

or
ws) F =&+ i aE D)
Furthermore

k/

and k

_ar_
e = TiaT Qw*"(J( “ep) = & (¥rp)

(k- ’) r\(k l)
—-'kk/ <J “Wrgs) ~ a, ("JEB))

2%t (dy ey, ) —

f!

5.}(‘\)) can also be represented by

@e)  S,(0) = b




and thereiore

-1 - |
(87 J‘k )Cw) (0 o 2! Line !

\

|

l

ot |

t 2r EO ((c.)-!f-)‘t \
l

Tine collison term (43) can now be written as follows:

< < 6AGB )
Z;‘ %2 Ae'gy % Vie Vae §en (6) T (Wann, )
= 6,65 7 |
3 B
8 LR L AR S DY
k=0 g 2
: &A' B 5dk!jdw 3(5’ ﬂJ)V(EZ E-m)\/(E-ro E;)S)(g_";,f)ym;
k AE iz ~E,

-

vhere W = EE - E was introduced as new integration

\
\
variable. ‘

We can now show that the rstio of two consecutive
terns of the k-sum in (4%8) will be smull.
The W - integral in (#8) has the general form

o
(49) C'k = fo(w Few) & (w+DE, )

Where F(W ) is slowly varying withw. 1t is eusy to sce

that the ratio between the terms with k=1 and k=0 is small.
we liave

3

Co = golw Few) ¥ (wtoEw) = (dw Fw) AE2n d, )

3
% TS5 i

C’ = gd_u Ftw) ’},(uHAE',m) = (sw Fto) zqri(ci;(m-ms')—é;m) |

|

™™™

b"'\




F(rd) can be extended analytically outside the ieal axis.
Since it is proportional to transition matrix elements Vﬁf)
we may also assume that F(w ) vanishes sufficiently strong

at the infinite point. Furthermore E_ is so large compared

B
with AE' that the lower limit in (45‘1) can be replaced by =0 .

Then by ( Y6 ) and

F—-a(eo = j o(w)
~Ep o

the integration taken along -9 to +s0 and encircling the

positive imaginary halfplane,we have

Ui
oterC, %r(F(-AE'>-—Fco))~_L o) TWVE W,
m - ?TAE'- Feo) & Fo) T F) T
[+
Similarly, we ftind by (4%7)
k=) () i) k)
0 ¢, e (F coe)=-F (o) 1 Feo
(k1) - Py T T

€ 1) Comy f{k'” (F(k_?)_aff)—f’: (o)

(k~1)
~~ ‘at ;— (0) = _f:?_t_ Lf
- ~ (“") TJ <
Ly F (o) y
() (k=1) -1

N () —O=1) =t (=) .
?(f) 2? H).',;_r and + (0) = F (0) t:A = F‘ t6)+L, foliows

from the previous assumptions that these functions are




expandable in power series which decline rapidly outside the -

circles of radius T, and EA respectively.

vur system is tius big enough to neglect higher order
terms in the expamnsion of Q (t -T) (for infinite systems
see E. Montrolls13) treatment). These achievements shall
vllow us to rewrite equ. (¥2) for an assymptotic aensity
matrix, defined over tue coarser energy scale AE'.
Since all functions occuring in the collision terms are smooth

enough, X from equ. ( #2) may be replaced by
’
7 o= AF 2w d, (0:p) .

The imaginary part of J;(‘Jgs) will give rise to a renormali-
zation of the energy levels which has little effect on the
assymptotic solution. We shall, for the sake of simplicity,
leave out the principal value integral replacing c;;(‘«-’) by
E'-,OYC‘J) . We then end up with

dA¢ ' ' ~fwat et
0(:3 = 755 Sap - z%:';@\'ﬁéﬁcse B‘sz“\éée ! j
) T%‘g 6.6 ;VI'%EﬁB da - Vie s %sir

(50)

Vi Vea e ot VeV ]

)
where the J.S‘ represent ordinary Kronecker symbols. Equ.(50)

is a master equation with an inhomageneous term.



It may be worth noting thuat for the derivation of a mister
egquation the courser energy scale AE' is nol aun essential step.
Ve aerivaltion given here yet has the advantage of simplifying
the interpretation of dispersion integrals as A;~functions
whatl is not quite so trivial after the first coarse-graining
step.

Lgu. (50) con in turn be written in terms of the original buasis

;l«‘>} and generalized to an operator equuation

o0 e cil#, ] -x [V [Tl ]-i[T,€

wueyS_LbﬁyjboueuuLes tue diagonal part of the commutator'[Ujfﬂ,

= Het  wt
g, ¢ 1

° y

and 1V is an operator the matrix elements of which are smooth

functions over thZe energy scale, the characteristic eneryy

intcrval for a change of V%ﬁ being AjEl LU may be defined as
— 1 —
U”=),-I°‘~>\/d‘ /3
a(,[&

(5H2)
-0 I ia> Vg <pl
A[3 e A
Be g

Note thut qp is a real symmetric matrix, just like bép itself,
since the basis we are using contains real bound functions

oniy.




4) The Character of the Solutions

Equ. (51), by virtue of its inhomogen®ous term, may have so-
lutions which behave oscillutory ot infinite times. 1t is there-
fore necessary to prove thiat a reloxating assvmptotic solution
Q(t) exists which fulfill: the requirements A and B siated in
chpt, 3. As main re:son {or a relaxating f&) to exist we shall
find the smoothness of SL over the enerygy scuale, with other words,
the condition that the time Tw + allowed for preparation of the
initi.dd state, his to be such that G & T, . If we could prepure
initiul states in .n arbitraty way we might well be able to choose

9 such that the assymtotic g&)remains oscillatory.
o

The homogen@ous part of equ. {51) has io be treated first.
To thnat behalf we have 1o investigute the underlying eigenvalue

Y

problem,

r T riF )
(53 LgP = - [&.,87] - [V, [V,9®]n] = 2q¢"

This operator equation mi:y now be turned into u matrix equu&}on
by introducing « basis {l«?}. Considering the smoothncess of V;p
over energy intervals AF’ one should keep in mind that the ei-
genvalue-problem {53) over the basis{]“>f can readily be con-
tracted in the same w.y as equ (39) was summed and smoothed
over ull ®€a .nd f&b , respectively wlla&A uni b€ B . ihe
buasis fld>} is used here for simplicity of writing only. {P&>§
may be truncated tv o finite set by eliminating all (%? with
Ey 7B Emax
density of the levels is negligibly small.

wiiere is an energy above which the occupatiocon

Equ. (53) can then be solved within the linear vector s;.ce

of n~th order square mutrices over tne fielu oi complex nuwwmbers.




In that case we h.ve to define the inner product as

#) @) _ 5 O* a)
( ? ') ) ;%(—3 y@(? f"ﬁ
Q)

and assume the f to be normalised so that

(fm, st,{"f) )

Now we can show the followins:

T1) Syumetiic eigenmitrices of equ. (53) velong to zero «ijjen-

vitlues and are diangonal.

Let f be uny symmetric ei;enmatrix, tnen the collision
. 3
term will be 2zero, since V" s symmetric and therefore

['V" fH)_‘L 0. kFrom the quadratic torm of i remains only

_Z(Ym [, S’(?)J) -ax

or

_ @ A _ L § 42
1 - Zzy gea,g °‘{3 t %‘P [ I

since the sum changes sign when interchnnging x and 8 .

rurthermore, from

e )
~i[H, ¢ ] =

or
)
@ fqp =Y
follows ?
¢
ﬁ(p) =0 for x#f
12) I a1l V,(p$0 the nonvanishing eigenvalues hove a negja-

tive real puart.

5}

S

shall denote a non-symmetric ei.enmatrix. ‘lhen




(>%)

where the o

) o (3) @ g, @ AP
€ C57) =-1(" [%,5]) -w(¢® [7, 0757, ])

i}

i

H

. x @y it
:_g; U@(PﬁF fa( -')c%_,[f'

(/‘Qﬂ
e - 31
22
3
)
t.)
il
)

R Q)
= -2, “’o(pif.(ﬁfz-f\?z,[
Ap o

thus Qe 1,‘,‘ 0.

—

The condition XF#:D for all « and/3 is not a very strong one

since ¥ is an average over a large number of states. Even if many

of the LéFvshould be exactly zero by symmetry requirements \44 would
: AL

be different from zero.

By means of T1 and T2 it is ulso eusy to see thut

the eigenvalues jL? , belonging to non-diagoncl eigen-

N
54
mutrices, :are non-degenerate and that any two such ? are

linearly independent.

The homogeneous equction (51) will then bave the solution
() t
g () = Jgld, M
1

q° are uniquely determined by ga, namely

<

; @)
§. = z;g dy .
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We shall first look at the diagonal purt of S(t). In this

case only the inhomogeneous term may play any rolce:

e—; Hot i?totj

o

%«

- i,  t ot
- e J _ 2 ~ ¥
2; K‘b‘ (g°r"‘ fanq' € )

The y-sum can be converted into an integral rcadily.

ds, =
d:* - -i[V

8, is a real, symmetric matrix, therefore

(55) e () -¢ = zﬂ'%: Vep (8o €903 = 5,0 84 (0p)
= 0. |

As one might have expected beforehand the occupation of the
eigenstates of xo in the ensemble does not chuange in time
since there ure no externc:l collisions und we are deuling

with the time-assymptote of the density matrix.

For obtaining the solution of the inhomogengous equuation
we huve to expund the inhomogeneous part in terms of the eigen-
matrices fﬂ). As the diagonul part of tuhne inhomo ,eneous term
contributes only to the constant SJ‘M , we can confine ourselves to expanding

.the non-diagonal part of this term, thus having non-symmetric matrices in the

expansion:
-~

e —idlpt 1 — (1)
(56) -i[U, €70 e m*] S )’?zt)
1

-]

The general form of rgﬂ)needs to be worked out for later con-

. L . . , @) .
clusions. Using the lineur independence of the ?q we can form

@ .

the inner product of equ.(56) with g




Q(Fy v(‘.'.’. 3" Joys Souy 2m
~tw t avy
= -4 e‘ [ j.:’ e(r)?.v ) _;_
Fr o?;;]' ] "‘f§3 N ',,53» r"gx
= . 5
(57) - iz ezwb’f‘ G
$) f
(571) (’ = (,.j% —
fo‘ foétpg fol‘@ ( '\(X \/px ) .

Denoting

D _ o&t (?(? )’ ?(‘{ ))

and the djoint determinunt of D by p*" |, we cimn obtuain lf(%(ﬁ")
from equ.(57) by ,
- A
2 e *“"m \!‘)
fi)y ==L ) D 2_
] D = ﬁ&"
-1 \rq
t
| = e (% Z' D" )
(55) 32
13 (Aj il
We can easily see now thuat QW a smooth funecticn ¢! i,
and E p . this will be so if Rg;i is a smooth functi.n ot
these varlables. By (57a) we cun see thut o, depends in a

2
'3 P
smooth wtzy,\only if g" depends smoothly on Eg . this can be

seen by looking at equ.(S”) for the eizenvector éh L iona-

ing to an eigzenvalue )_T and forming the B =matrix elenents:

¥ ) S RVERw: {r)* r)® « (Fix
iy T U
- ‘3—; & Vc'(y (SJ.:!(Y Sra ) = Sy 2:}4"'\53



or

i

A T_, - ——— ; -
S,(*j) Lo L+); ; p«\/,(x(s; ) f[r))

<« rx

)
Therefore §°<(3 depends oun k:p as smooth as ,3.{/(" +/‘1)
is perfectly sufficient to convert the ¥ -sum in (58) iunto

an integral,

The total solution of equ. (51) then has the form

Aqt l‘\t
g(t) = Z 3(7)0(16 1 + Z & '( f(?')o(’t-
1 7

-
o 1
(58) t A
A g )‘t - ¢
_ 1@ ARt o) RO f,\z‘r)d?‘
?o(a)+‘%?? Ay e +);? i !

where f o is the diasonal matrix representing the dinsonal part
0() ’ ) Yzfyaf/'ye
of § . cccordine to 11 all 3\17‘ have o non-vanishing, real part,
o
therefore the terms under tne first sum are damped exponenti-
1lly, but this is not immediutely clear for the torwms under

the second sum of equ. (58). We have

A 25T ( e~ A
Rﬂtj 7 (»-)o(r: Ze QM tera = 2g)T
7 £y
(5()) -a’t ld\t A
_ S oe " Q(?)
L 7T “M:"
ﬁa’v a/3 - 2? zah

The second term under tine swm is again duamped, =0 we loous

attention on the first:




et N _;uf t
- i n 2
1 e t‘l) (q}
c dE €, & (5,) o (Fp) ——r - G (5,6
%;): —zg\)m_.l? { -] T _l“‘))Q _3? Q Fi v)

where STF)is the density of stautes. By the substitution

= k£

=an

2 .
= = +ixy +
Er..t 2 ? E
this goes over into

" c0-1A5t -2
)'1 folt: 6(F ) [ G‘(t +E+1/1")d(5‘_+£4t)4) 3 A2
~(E+i23)t

The integration path of the inner integral is from the point
-(E+i)q)t, which is lying in the positiv h-1lf-piane, parc:llel
to the real axis to 4+ 00 . lThe distance of the integration

puth from the reual axis is of the order of m=gnitude!)since
— )
t> T, = ReX;

We then extend the inteqgrand analytically and close the integral
path C by encircling the negative imaginary half-plane clock-
wise, cowming back to the p01nt—05h)0t which is of the order

infinity under the outer integral, We obtain

-2
A‘,fjoh_ y(s)fs'(t"‘t*?;\“)Q‘Q)(E)%*E 1‘2?) —iz Az
(7)
it ey ey G, 2ot

4

This shows that the terms in the second sum of (58) are indeed

damped exponentially.



5) Conclusion

We were able to derive a master equation for an en-
semble of isoliited molecules. It should be borne in mind,
however, that the statement of equilibrium for the mole-
cular system by some Kind of experiment is bounu Lo .« tiwme

scale T% of tne oruer
L9
Ceog & T3,

r1he necessary requiremenis were of a raluner general noiure
ana tikely tLu be fultiileu 1tor malecules wilh L or moure
aloms. inequality (4C) will alwayvs holia if Lris sutticirent-
iy smull, us can easiiyv be seen by equs. (54) and (41a;.
ruriiermoure, ihe smootimess uf M& N gQ'.uuLeeu by con-
“iitions n1)=-A3), can hurdly be tnvugni Lo ve not tultilled
in osny non-p.thnological case. 1t was menlioned betore Lnut
tbe requirements 1)-B%) are not éssentlial in deriving the
miester equation ihey may, however, in practice play an
important role for condensing ithe original sel of equi-tions
Lo a lower order. in muny instances conuens. tion m.y be
possible to :n exteni where the runge of energy involved

is divided into 10 intervals only and yet allows to aes-
cribe the rel: xation process with sufficient accuracy.
Estimation of such very course mutrix-elements Vasipurtly by

experiment, is then not inconcivable uny more.

A crude way of determiining by order of magnituue the
rate of an intramolecular rearrangcment reaction ( in the
region where it is of first order) would be to use & suitable
uverage over the F@Jq as a rate coefficient. retermining

Fad

T, such Lhat

ZI eReA? -

A

9

——




we could use
&:\:

as a rate coefficient.

ﬁ‘\?”"

According to the outline in chpt.2 the complete expres-

sion for the rate will be
4 Eoy _ I ¢
R _o?-t-t?‘('k g) = t"(p 0(*)

The general f'orm of g(t) is

71 @ A7
9&)=§om1+%¢f e F?
and
ol @ At .
o‘[} - Zf ),76 0
so tLhat

Agt -
(60) R = Z’\?e? o tr(K5T)
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R by equ. (50) is « real quantity becouse the eigenvualues

»
appear pairwise, i.e. if );»is an eigenvalue :l? is @l1s0 one,

Finally we may study the mechanism in an intramole:ular
conversion reaction including vibrationnl relaxation aftter
external collisions. 1Though we 4id not include external
collisions explicitely in the description of (he relaxation
p:rocess we can make use of the master equation (51) for the
period between collisions. If the duration of an exlternal
collision is short compared with the time between collisions,

Ty » We may agalin specify an initial density gr by « set
o



I

of commuting observables, fo is then the initial state of

an ensemble representing wave packets which are localized onio
configuration I. Applving equ. (51) we cun say the lollowing:

gf will, in an eigenrepresentation of ;fo, have large ele-

ments far from the diagonal. In the expansion of 901.' in teras

. . (G)]
of the eigenmatrices g’ ,

(GO Y3

g =25 4,
9

there will large o(f occur for highly unsymmetric S)m).
By equation (54),the negative real parts of the eigenvalues
corresponding to these eigeomatrices are the largest. Thus,
the parts of the density matrix far from the diagonal will
quickly be aamped away. We arrive at the same result if we
set up equ. (51) for a density matrix gF(t) witllgtf instead

of gto. From the latter case we can see immediately that

lim ¢Tet) = ¢,

e - )
f: being the one defined in chpt.2 and the relaxation time
mffor this process may be used to determine the order of
the observation time 7T, , for identifying the initial state
of the species I,

AN
Thus, if "CE & %‘“‘Lane{t’, what will usually be the case,
and also the characteristic change of the diagonal elements
of g by the external collisions is slow compared witll T;,
equ.(51) will give the correct rate for the isomerization

reaction.
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